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Rigid Global Matching 
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Iterated Closest Points (ICP) 

Problems 

• Need good intialization 

 Non-convex problem 

 Runs into local minima 

• Deformable shape matching 

 Even worse: bad initialization even more problematic 

 Reason: more degrees of freedom 

 

 

Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 
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Global Matching 

How to assemble the bunny (globally)? 

Pipeline (rough sketch): 

• Feature detection 

• Feature descriptors 

• Spectral validation 



 5 

Feature Detection 

Feature points (keypoints) 

• Regions that can be identified locally 

• “Bumps”, i.e. points with maximum curvature 

 “curvature” ∈ 𝜅1, 𝜅2,
1

2
𝜅1 + 𝜅2 , 𝜅1 ⋅ 𝜅2  

 Mean/principal curvature most stable 
(𝜅2 often inaccurate when computed by least-squares fitting) 

 “SIFT” features – compute bumps at multiple scales: 

– With with different radii 

– Search for maxima in 3D surface-scale space 

 Output: list of keypoints 
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Bunny Curvature 

Stanford Bunny 
(dense point cloud) 

principal  
curvature 1 

principal  
curvature 2 

mean  
curvature 

Gaussian  
curvature 

[courtesy of Martin Bokeloh] 
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Descriptors 

Feature descriptors: 

• Rotation invariant description of local neighborhood 
(within scale of the feature point) 

 Translation already fixed by feature point 

• Used to find match candidates 

• Not 100% reliable (typically 3x – 5x outlier ratio) 
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Descriptors 

Rotation invariant descriptors: 

• Curvatures 𝜅1, 𝜅2 , derived properties 

 Curvature histograms in spherical neighborhood 

• Pairwise distances 

 “d2-Histograms”: Histogram of pairwise distance within sphere 

 Histogram of distances to medial axis 

• Spin images 

 Use surface normal 

 Cut-out sphere 

 Rotate geometry around sphere and splat into “spin-image” 

• Spherical harmonics power spectrum, Zernicke 
descriptors 



 9 

Correspondence Validation 

We have: 

• Candidate matches 

• But every keypoint matches 
5 others on average 

• At most one of these 
is correct 

Validation Criterion: 

• Euclidian distance should be preserved 
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Invariants 

Rigid Matching 

• Invariant: Euclidean distances are preserved 
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Branch and Bound 

Simple Algorithm: 

• Branch-and-bound [Gelfand et al. 2005] 

• Fix correspondences, prune all incompatible ones 
(i.e., violation of Euclidian distance) 

• Try all possibilities 

Efficiency: 

• Efficient for sparse (widely spaced) features 

 Only few combinations work 

• Possibly exponential for dense features 
(try many equivalent solutions) 
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Alternatives 

Alternatives: We will look at 

• Spectral matching 

• Randomized search 

Further alternatives: 

• Loopy belief propagation 
(“Correlated Correspondences”, Anguelov 2005). 

• Quadratic assignment heuristics 

Important: 

• Structure: Pairwise optimization problem 



Isometric Matching 
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Invariants 

Intrinsisc Matching 

• Invariants: All geodesic distances are preserved 
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Invariants 

Intrinsisc Matching 

• Presevation of geodesic distances 
(„intrinsic distances“) 

• Approximation 

 Cloth is almost unstretchable 

 Skin does not stretch a lot 

 Most live objects show approximately isometric surfaces 

• Accepted model for deformable shape matching 

 In cases where one subject is presented in different poses 

 Accross different subjects: Other assumptions necessary 

 Then: global matching is an open problem 

 



Feature Based Matching 
Quadratic Assignment Model 
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Problem Statement 

Deformable Matching 

• Two shapes: original, deformed 

• How to establish correspondences? 

• Looking for global optimum 

 Arbitrary pose 

Assumption 

• Approximately isometric 
deformation 

[data set: S. König, TU Dresden] 
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Algorithm 

Feature-Matching 

• Detect feature points 

 
 
 

• Local matching: potential correspondences 

 

 

• Global filtering: correct subset 
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Algorithm 

Feature-Matching 

• Detect feature points 

 
 
 

• Local matching: potential correspondences 

 

 

• Global filtering: correct subset 

 Maxima of Gaussian curvature 

 Locally unique descriptors 
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Algorithm 

Feature-Matching 

• Detect feature points 

 
 
 

• Local matching: potential correspondences 

 

 

• Global filtering: correct subset 

 Maxima of Gaussian curvature 

 Locally unique descriptors 

 Curvature histograms 

 Heat-kernels, geodesic waves 
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Algorithm 

Feature-Matching 

• Detect feature points 

 
 
 

• Local matching: potential correspondences 

 

 

• Global filtering: correct subset 

 Curvature histograms 

 Heat-kernels, geodesic waves 

 Quadratic assignment 

 Spectral relaxation [Leordeanu et al. 05] 

 RANSAC 

 Maxima of Gaussian curvature 

 Locally unique descriptors 
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Quadratic Assignment 

Most difficult part: Global filtering 

• Find a consistent subset 

• Pairwise consistency: 

 Correspondence pair must preserve intrinsic distance 

• Maximize number of pairwise consistent pairs 

 Quadratic assignment (in general: NP-hard) 
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Quadratic Assignment Model 

Quadratic Assignment 

• n potential  
correspondences 

• Each one can be 
turned on or off 

• Label with variables xi 

• Compatibility score: 

 

 

   (incomplete model; details later) 
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Quadratic Assignment Model 

Quadratic Assignment 

• Compatibility score: 

 Singeltons: 
Descriptor match 

xj = 1 
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Quadratic Assignment Model 

Quadratic Assignment 

• Compatibility score: 

 Singeltons: 
Descriptor match 

 Doubles: 
Compatibility xj = 1 
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Quadratic Assignment Model 

Quadratic Assignment 

• Matrix notation: 

 

 

 

 
 

• Quadratic scores are encoded in Matrix D 

• Linear scores are encoded in Vector s 
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Quadratic Assignment Model 

Quadratic Assignment 

• Task: find optimal binary vector x 

 

Regularization: 
• No trivial solution x = 0 

 

Examples 
• As many „1“s as possible without exceeding error 

threshold 

• Fixed norm of x-vector 
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Spectral Matching 

Simple & Effective Approximation: 

• Spectral matching [Leordeanu & Hebert 05] 

• Form compatibility matrix: 


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Diagonal:  
Descriptor match 

Off-Diagonal:  
Pairwise compatibility 

All entries within [0..1] 
= [no match...perfect match] 
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Spectral Matching 

Approximate largest clique: 

• Compute eigenvector with largest eigenvalue 

• Maximizes Rayleigh quotient: 

 

 

• “Best yield” for bounded norm 

 The more consistent pairs (rows of 1s), the better 

 Approximates largest clique 

• Implementation 

 For example: power iteration 

2

T
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Spectral Matching 

Post-processing 

• Greedy quantization 

 Select largest remaining entry, set it to 1 

 Set all entries to 0 that are not pairwise consistent 
with current set 

 Iterate until all entries are quantized 

In practice... 

• This algorithm turns out to work quite well. 

• Very easy to implement 

• Limited to (approx.) quadratic assignment model 
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Spectral Matching Example 

Application to Animations 

• Feature points: 
Geometric MLS-SIFT  
features [Li et al. 2005] 

• Descriptors: 
Curvature & color 
ring histograms 

• Global Filtering: 
Spectral matching 

• Pairwise animation matching: 
Low precision passive stereo data 

[Data set: Christian Theobald,  
 Implementation: Martin Bokeloh] 



Ransac and Forward Search 
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Random Sampling Algorithms 

Estimation subject to outliers: 

• We have candidate 
correspondences 

• But most of them are bad 

• Standard vision problem 

• Standard tools: 
Ransac & forward search 
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RANSAC 

„Standard“ RANSAC line fitting example: 

• Randomly pick two points 

• Verify how many others fit 

• Repeat many times and pick the best one (most matches) 

data 

data 

pick rnd. 2 

pick rnd. 2 

data 

data 
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Forward Search 

Forward Search: 

• Ransac variant 

• Like ransac, 
but refine model by „growing“ 

• Pick best match, then recalculate 

• Repeat until threshold is reached 

start iteration iteration... 

result 
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RANSAC/FWS Algorithm 

Idea 

• Starting correspondence 

• Add more that are consistent 

 Preserve intrinsic distances 

• Importance sampling algorithm 

Advantages 

• Efficient (small initial set) 

• General (arbitrary criteria) 
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Ransac/FWS Details 

Algorithm: Simple Idea 

• Select correspondences with probability proportional to 
their plausibility 

• First correspondence: Descriptors 

• Second: Preserve distance (distribution peaks) 

• Third: Preserve distance (even fewer choices) 

 ... 

• Rapidly becomes deterministic 

• Repeat multiple times (typ.: 100x) 

 Choose the largest solution (larges #correspondences) 
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Ransac/FWS Details 

Provably Efficient: 

• Theoretically efficient (details later) 

• Faster in practice (using descriptors) 

Flexible: 

• In later iterations (> 3 correspondences), allow for outlier 
geodesics 

• Can handle topological noise 
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Foreward Search Algorithm 

Forward Search 

• Add correspondences incrementally 

• Compute match probabilities given the information 
already decided on 

• Iterate until no more matches can found that meet a 
certain error threshold 

• Outer Loop:  

 Iterate the algorithm with random choices 

 Pick the best (i.e., largest) solution 
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Foreward Search Algorithm 

Step 1: 

• Start with one correspondence 

 Target side importance sampling: 
prefer good descriptor matches 

 Optional source side imp. sampl: prefer unique descriptors 

source target 

Descriptor  
matching 

scores 
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Foreward Search Algorithm 

Step 2: 

• Compute „posterior“ incorporating geodesic distance 

 Target side importance sampling: 
sample according to descriptor match  distance score 

 Again: optional source side imp. sampl: prefer unique descriptors 

source 

posterior 
(distance) 

target 
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Foreward Search Algorithm 

Step 2: 

• Compute „posterior“ incorporating geodesic distance 

 Target side importance sampling: 
sample according to descriptor match  distance score 

 Again: optional source side imp. sampl: prefer unique descriptors 

source target 

posterior 
(distance & 
descriptors) 
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Foreward Search Algorithm 

Step 3: 

• Same as step 2, continue sampling... 

source target 

posterior 
(distance & 
descriptors) 
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Foreward Search Algorithm 

Step 3: 

• Same as step 2, continue sampling... 

source target 

posterior 
(distance & 
descriptors) 
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Foreward Search Algorithm 

Source side: 

• Match all descriptors, compute entropy 

• Choose minimum entropy features for start 

• Subsequent features: consider entropy of all 
matches in addition 

 

source target 

posterior 
(distance & 
descriptors) 
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Another View 

Landmark Coordinates 

• Distance to already established points give a charting of 
the manifold 
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Results 

[data sets: Stanford 3D Scanning Repository / Carsten Stoll] 
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Results: Topological Noise 

Spectral Quadratic Assignment  
[Leordeanu et al. 05] 

Ransac Algorithm 
[Tevs et al. 09] 



Complexity 
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How expensive is all of this? 

Cost analysis: 

• How many rounds of sampling are necessary? 

Constraints [Lipman et al. 2009]: 

• Assume disc or sphere topology 

• An isometric mapping is in particular a conformal 
mapping 

• A conformal mapping is determined by 3 point-to-point 
correspondences 
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How expensive is it..? 

First correspondence: 
• Worst case: n trials (n feature points) 

• In practice: k << n good descriptor matches 
(typically k  5-20) 

Second correspondence: 
• Worst case: n trials, expected: n trials 

• In practice: very few (due to 
descriptor matching, maybe 1-3) 

Last match: 

• At most two matches 
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Costs... 

Overall costs: 

• Worst case: O(n2) matches to explore 

• Typical: O(n1.5) matches to explore 

Randomization: 

• Exploring m items costs expected O(m log m) trials 

• Worst case bound of O(n2 log n) trials 

• Asymptotically sharp: O(c)-times more trials for shrinking 
failure probability to O(exp(-c2)) 
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Costs... 

Surface discretization: 

• Assume  -sampling of the manifold (no features): 
O( 

-2) sample points 

• Worst case O( -4 log   
-1) sample correspondences 

for finding a match with accuracy . 

• Expected: O( -3 log   
-1). 

In practice: 

• Importance sampling by descriptors is very effective 

• Typically: Good results after 100 iterations 

• Entropy-based planning: 1-10 iteartions 
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General Case 

Numerical errors: 
• Noisy surfaces, imprecise features: reflected in probability 

maps (we know how little we might know) 

Topological noise: 
• Use robust constraint potentials 

• For example: account for 5 best matches only 

Topologically complex cases: 
• No analysis beyond disc/spherical topology 

• However: the algorithm will work in the general case 
(potentially, at additional costs) 

 



Other Application: 
Symmetry Detection 
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Symmetry Detection 

[data set: M. Wacker, HTW Dresden] 
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Symmetry Detection 

[data sets: IKG, Leibnitz University Hannover / M. Wacker, HTW Dresden] 
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Rigid, Isometic, Relaxed Isometric 

rigid isometric relaxed isometric 



Learning Correspondences 
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Objective 

Window Variants 
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Objective 

User: a few sparse sketches Find similar elements 
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Learning a Matching Model 

Learning a matching model 

• Learn descriptors 

• Learn geometric relations 
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Energy Function 

Markov Chain Model 

• Global optimum: Belief propagation 

• Symmetry: Enumerate local optima 

1

𝑍
 Φi(𝐱i) Ψi(𝐱i, 𝐱i+1) 

𝑘−1

𝑖=1

𝑘

𝑖=1

 



 64 

Result: Single-Class Learning 

Window Variants 
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Result: Multi-Class Learning 
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Results: Ludwigskirche 


