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Rigid Global Matching



Iterated Closest Points (ICP)

/ / /
/ / / Part B
/ 4 | |
/ / (moves, rotation & translation)
/ / Part A
(stays fixed)
Problems

 Need good intialization
= Non-convex problem
= Runs into local minima
e Deformable shape matching
= Even worse: bad initialization even more problematic

= Reason: more degrees of freedom



Global Matching

How to assemble the bunny (globally)?

Pipeline (rough sketch):
e Feature detection

e Feature descriptors
e Spectral validation



Feature Detection

Feature points (keypoints)
e Regions that can be identified locally
e “Bumps”, i.e. points with maximum curvature

= “curvature” € {Kl, Kz,% (k1 + Ky),Kq Kz}
= Mean/principal curvature most stable
(x5, often inaccurate when computed by least-squares fitting)
= “SIFT” features — compute bumps at multiple scales:
— With with different radii

— Search for maxima in 3D surface-scale space
= Qutput: list of keypoints



Bunny Curvature

principal
curvature k,

principal
curvature Kk,

Stanford Bunny
(dense point cloud)

Gaussian
curvature

mean
curvature

[courtesy of Martin Bokeloh]
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Descriptors

Feature descriptors:

e Rotation invariant description of local neighborhood
(within scale of the feature point)

= Translation already fixed by feature point
e Used to find match candidates
e Not 100% reliable (typically 3x — 5x outlier ratio)



Descriptors

Rotation invariant descriptors:

e Curvatures {k4, k,}, derived properties

= Curvature histograms in spherical neighborhood

e Pairwise distances
= “d2-Histograms”: Histogram of pairwise distance within sphere
= Histogram of distances to medial axis

e Spin images
= Use surface normal

= Cut-out sphere
= Rotate geometry around sphere and splat into “spin-image”

e Spherical harmonics power spectrum, Zernicke
descriptors



Correspondence Validation

We have:

e Candidate matches

e But every keypoint matches
5 others on average

e At most one of these
IS correct

Validation Criterion:

e Euclidian distance should be preserved



Invariants

Rigid Matching

e Invariant: Euclidean distances are preserved
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Branch and Bound

Simple Algorithm:
e Branch-and-bound [Gelfand et al. 2005]

e Fix correspondences, prune all incompatible ones
(i.e., violation of Euclidian distance)

 Try all possibilities

Efficiency:
o Efficient for sparse (widely spaced) features
= Only few combinations work

e Possibly exponential for dense features
(try many equivalent solutions)
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Alternatives

Alternatives: We will look at
e Spectral matching
e Randomized search

Further alternatives:

e Loopy belief propagation
(“Correlated Correspondences”, Anguelov 2005).

e Quadratic assignment heuristics

Important:

e Structure: Pairwise optimization problem
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Isometric Matching



Invariants

Intrinsisc Matching
* Invariants: All geodesic distances are preserved
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Invariants

Intrinsisc Matching

* Presevation of geodesic distances
(,,intrinsic distances”)

e Approximation
= Cloth is almost unstretchable
= Skin does not stretch a lot
= Most live objects show approximately isometric surfaces

e Accepted model for deformable shape matching
= |In cases where one subject is presented in different poses

= Accross different subjects: Other assumptions necessary
= Then: global matching is an open problem
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Feature Based Matching
Quadratic Assighment Model



Problem Statement

Deformable Matching
e Two shapes: original, deformed
e How to establish correspondences?

e Looking for global optimum
= Arbitrary pose

Assumption

e Approximately isometric
deformation

[data set: S. Konig, TU Dresden]
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Algorithm

Feature-Matching
e Detect feature points

e Local matching: potential correspondences

e Global filtering: correct subset
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Algorithm

Feature-Matching
e Detect feature points

= Maxima of Gaussian curvature
= Locally unique descriptors

e Local matching: potential correspondences

e Global filtering: correct subset
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Algorithm

Feature-Matching
e Detect feature points

= Maxima of Gaussian curvature
= Locally unique descriptors

e Local matching: potential correspondences

= Curvature histograms
= Heat-kernels, geodesic waves

e Global filtering: correct subset
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Algorithm

Feature-Matching
e Detect feature points

= Maxima of Gaussian curvature
= Locally unique descriptors

e Local matching: potential correspondences

= Curvature histograms
= Heat-kernels, geodesic waves

e Global filtering: correct subset
= Quadratic assignment
= Spectral relaxation [Leordeanu et al. 05]
= RANSAC
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Quadratic Assignment

Most difficult part: Global filtering

e Find a consistent subset
e Pairwise consistency:
= Correspondence pair must preserve intrinsic distance

e Maximize number of pairwise consistent pairs
= Quadratic assignment (in general: NP-hard)
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Quadratic Assighment Model

Quadratic Assignment
e n potential

correspondences

e Each one can be
turned on or off

o Label with variables x;
e Compatibility score:

P(match) (Xl . ,X ) HP(Smgle) Hp(compatlble) X,' c {0,1}

i,j=1

(incomplete model; details later)
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Quadratic Assighment Model

Quadratic Assignment

e Compatibility score:

= Singeltons:
Descriptor match

P(match)(xl’ WX ) HP(smgle)HP(compatzble) X,' c {0,1}

i,j=1
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Quadratic Assighment Model

Quadratic Assignment

e Compatibility score:

= Singeltons:
Descriptor match

= Doubles:
Compatibility

P(match)(xl’ WX ) Hp(smgle) HP(compatzble) X,' c {0,1}

i,j=1
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Quadratic Assighment Model

Quadratic Assignment
e Matrix notation:

P(match)(x1 . ,X ) Hp(smgle) Hp(compatzble)

i,j=1

logp(match)(xl’ WX, ) Zlogp(smgle) + Zlogp(jompatible)

i,j=1

- xXs + XxX'Dx

e Quadratic scores are encoded in Matrix D
e Linear scores are encoded in Vector s
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Quadratic Assighment Model

Quadratic Assignment
e Task: find optimal binary vector x

Regularization:
e No trivial solutionx =0

Examples

e As many ,1“s as possible without exceeding error
threshold

e Fixed norm of x-vector
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Spectral Matching

Simple & Effective Approximation:
e Spectral matching [Leordeanu & Hebert 05]

e Form compatibility matrix:
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All entries within [0..1]
= [no match...perfect match]
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Spectral Matching

Approximate largest clique:
e Compute eigenvector with largest eigenvalue
e Maximizes Rayleigh quotient:
x ' AX
2
x|

e “Best yield” for bounded norm

arg max

= The more consistent pairs (rows of 1s), the better
= Approximates largest clique

e Implementation

= For example: power iteration
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Spectral Matching

Post-processing
e Greedy quantization

= Select largest remaining entry, setitto 1

= Set all entries to 0 that are not pairwise consistent
with current set

= |terate until all entries are quantized

In practice...
e This algorithm turns out to work quite well.
e Very easy to implement
e Limited to (approx.) quadratic assignment model
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Spectral Matching Example

Application to Animations

e Feature points:
Geometric MLS-SIFT
features [Li et al. 2005]

e Descriptors:
Curvature & color
ring histograms

e Global Filtering: [Data set: Christian Theobald,
Spectral matching Implementation: Martin Bokeloh]

e Pairwise animation matching:
Low precision passive stereo data
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Ransac and Forward Search



Random Sampling Algorithms

Estimation subject to outliers: _ o

e We have candidate
correspondences

e But most of them are bad

e Standard vision problem

e Standard tools:
Ransac & forward search
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RANSAC
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yStandard” RANSAC line fitting example:
e Randomly pick two points
e Verify how many others fit
e Repeat many times and pick the best one (most matches)



Forward Search
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Forward Search:
e Ransac variant
e Like ransac,

but refine model by ,,growing”

e Pick best match, then recalculate

e Repeat until threshold is reached
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RANSAC/FWS Algorithm

Idea
 Starting correspondence
e Add more that are consistent

= Preserve intrinsic distances

e Importance sampling algorithm

Advantages
e Efficient (small initial set)
e General (arbitrary criteria)
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Ransac/FWS Details

Algorithm: Simple Idea

e Select correspondences with probability proportional to
their plausibility

e First correspondence: Descriptors
e Second: Preserve distance (distribution peaks)
e Third: Preserve distance (even fewer choices)

e Rapidly becomes deterministic
e Repeat multiple times (typ.: 100x)

= Choose the largest solution (larges #correspondences)
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Ransac/FWS Details

Provably Efficient:
e Theoretically efficient (details later)
e Faster in practice (using descriptors)

Flexible:

e In later iterations (> 3 correspondences), allow for outlier
geodesics

e Can handle topological noise
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Foreward Search Algorithm

Forward Search
e Add correspondences incrementally

e Compute match probabilities given the information
already decided on

e |[terate until no more matches can found that meet a
certain error threshold
e Quter Loop:

= |terate the algorithm with random choices
= Pick the best (i.e., largest) solution
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Foreward Search Algorithm

Descriptor
matching
scores

Step 1:
e Start with one correspondence

= Target side importance sampling:
prefer good descriptor matches

= Optional source side imp. sampl: prefer unique descriptors
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Foreward Search Algorithm

posterior
(distance)

Step 2:
e Compute , posterior” incorporating geodesic distance

= Target side importance sampling:
sample according to descriptor match x distance score

= Again: optional source side imp. sampl: prefer unique descriptors
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Foreward Search Algorithm

posterior
(distance &
descriptors)

Step 2:
e Compute , posterior” incorporating geodesic distance

= Target side importance sampling:
sample according to descriptor match x distance score

= Again: optional source side imp. sampl: prefer unique descriptors
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Foreward Search Algorithm

Step 3:

e Same as step 2, continue sampling...

posterior
(distance &
descriptors)
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Foreward Search Algorithm

Step 3:

e Same as step 2, continue sampling...

posterior
(distance &
descriptors)
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Foreward Search Algorithm

posterior
(distance &
descriptors)

Source side:
e Match all descriptors, compute entropy
e Choose minimum entropy features for start

e Subsequent features: consider entropy of all

matches in addition
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Another View

Landmark Coordinates

e Distance to already established points give a charting of
the manifold
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Results

[data sets: Stanford 3D Scanning Repository / Carsten Stoll]
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Results: Topological Noise

Spectral Quadratic Assignment Ransac Algorithm
[Leordeanu et al. 05] [Tevs et al. 09]
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Complexity



How expensive is all of this?

Cost analysis:

e How many rounds of sampling are necessary?

Constraints [Lipman et al. 2009]:
e Assume disc or sphere topology

e An isometric mapping is in particular a conformal
mapping

e A conformal mapping is determined by 3 point-to-point
correspondences
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How expensive is it..?

First correspondence:
e Worst case: n trials (n feature points)
e In practice: k <<n good descriptor matches
(typically k ~5-20)

Second correspondence:
e Worst case: n trials, expected: n trials

 |In practice: very few (due to
descriptor matching, maybe 1-3)

Last match:
e At most two matches
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Costs...

Overall costs:
e Worst case: O(n?) matches to explore
e Typical: O(n') matches to explore

Randomization:
e Exploring m items costs expected O(m log m) trials
e Worst case bound of O(n? log n) trials

e Asymptotically sharp: O(c)-times more trials for shrinking
failure probability to O(exp(-c?))
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Costs...

Surface discretization:

e Assume &-sampling of the manifold (no features):
O(&2) sample points

e Worst case O(s* log £1) sample correspondences
for finding a match with accuracy e.

o Expected: O(c3 log &1).

In practice:

e Importance sampling by descriptors is very effective
e Typically: Good results after 100 iterations
e Entropy-based planning: 1-10 iteartions
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General Case

Numerical errors:

e Noisy surfaces, imprecise features: reflected in probability
maps (we know how little we might know)

Topological noise:
e Use robust constraint potentials
e For example: account for 5 best matches only

Topologically complex cases:

e No analysis beyond disc/spherical topology
e However: the algorithm will work in the general case
(potentially, at additional costs)
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Other Application:
Symmetry Detection



Symmetry Detection

[data set: M. Wacker, HTW Dresden]



Symmetry Detection

[data sets: IKG, Leibnitz University Hannover / M. Wacker, HTW Dresden]
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Rigid, Isometic, Relaxed Isometric

rigid isometric relaxed isometric
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Learning Correspondences



Objective
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Objective

User: a few sparse sketches

Find similar elements
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Learning a Matching Model

Learning a matching model
e Learn descriptors
e Learn geometric relations
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Energy Function
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Markov Chain Model

e Global optimum: Belief propagation

e Symmetry: Enumerate local optima
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Result: Single-Class Learning
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Result: Multi-Class Learning




Ludwigskirche

Results
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